Advanced Ceramic Solutions for the Energy Industry

Your Experienced Partner

STC offers the energy industry custom ceramic solutions to promote energy efficiency, safety and superior performance in challenging and extreme environments found across the energy sector. Power distribution, renewable energy, and energy storage applications are just a few of areas within the energy market that benefit from the unique properties of ceramic materials. Excellent wear, corrosion, and electrical properties make technical ceramics an appealing option for ensuring long life components in critical energy systems.

Partnership in Energy Ceramic Application Development:

We host over 135,000 square feet of manufacturing space, which allows us to control quality in every aspect of the ceramic production process, while still maintaining industry leading levels of access to ceramics engineering talent. We have complete in-house capabilities to partner with you in engineering, tooling and manufacturing technical ceramics to your unique requirements. Our broad selection of materials offers a distinct set of properties that lend themselves for use in diverse energy applications, including:

Energy Distribution Components
- High Pressure Cable Interconnects
- Capacitors
- Vacuum Interrupters
- High Voltage Insulators
- Insulating Tubes
- Heat Exchanger Tubes
- Structural Insulators
- Convolute Standoffs
- Switch Housings
- Ceramic Seal Components
- Transmission Line Insulators

Structural Energy Components:
- Ceramic Rollers
- Foundry & Casting Components
- Ceramic Connectors
- Ceramic Insulation Cones
- Ceramics Guide Rods
- Ceramic Support Bars
- Ceramic Lead Screws
- Ceramic Nuts
- Ceramic Support Road
- Ceramic Threaded Rods
- Ceramic Baffles
- Turbine Engine Struts
- Crucibles for Pileo Processing
- Ceramic Liners
- Ceramic Insulating Tiles

Electrical Power Components:
- X-ray Tubes
- High Voltage Feedthroughs
- Ceramic Insulators
- Ceramic Lighting Components
- Power Switches
- Ceramic Resistors
- Standoff Insulators
- Protection Tubes
- Ceramic Bus Tiles
- Traveling Wave Tubes
- Electron Tubes
- Vacuum Switch Tubes
- Planar Capacitors
- Ceramic Bus Tiles
- Ceramic Insulating Tiles

Energy Generation:
- Energy Conversion Components
- Recovery Pump Components
- Submersible Pumps
- Syngas System Components
- Hydrogen Generation Systems
- Waste Energy Capture Components
- Energy Conversion Adapters
- Hydrocarbon Processing Components
- Ceramic Rotors & Caps
- Dense Catalytic Tubes
- Membranes for Electrical Applications
- Heat Engine Insulators
- Spark Gaps Components
- Nanoporous Alumina Membranes
- Carbon Emissions Reduction
Technical Ceramic Solutions for the Energy Industry

Specialized Ceramic Material Solutions

We provide Yttria Stabilized Zirconia (YTZP), Magnesia Stabilized Zirconia (MSZ), Zirconia Toughened Alumina (ZTA) and Alumina in percentages from 74-99.96%. These materials span a wide range of material properties capable of withstanding the conditions and offering an extended useful lifetime. Ceramics are ideally suited to provide the strength, electrical, thermal and corrosion resistant properties needed in fuel cell and battery systems.

Porcelain Materials

Porcelain materials historically used in the distribution industry.

Critical Components

Critical components for energy generation and storage capitalizes upon the entire spectrum of STC materials. Hydrogen generation combines both innovative nanoporous materials, as well as high strength and high-density zirconia materials. Ceramic materials find application in dynamic energy storage and recovery systems, where other materials fail to perform.

Ceramic Solutions for the Energy Industry

Electrical Ceramic Solutions for the Energy Industry

<table>
<thead>
<tr>
<th>Property</th>
<th>ASTM Method</th>
<th>Units</th>
<th>AL95 95%</th>
<th>AL96 98%</th>
<th>AL98 98%</th>
<th>AL95 99.5%</th>
<th>AL98 99.8%</th>
<th>ZTA-02 (Nital 10% alcohol)</th>
<th>ZTA-14</th>
<th>ZTA-20</th>
<th>MSZ (Magnesia Stabilized)</th>
<th>YTZP 2000 (Magnesia Stabilized)</th>
<th>YTZP 4000 (Magnesia Stabilized)</th>
<th>CSZ (Ceria Stabilized)</th>
<th>Silicon Nitride (Si3N4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Porcelain</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td></td>
<td>Ivory</td>
<td>White</td>
<td>Purple</td>
<td>Ivory</td>
<td>White</td>
<td>Ivory</td>
<td>Off White</td>
<td>White</td>
<td>Ivory or Yellow</td>
<td>Ivory</td>
<td>Ivory</td>
<td>Yellow</td>
<td>Black</td>
</tr>
<tr>
<td>Gas Permeability</td>
<td></td>
<td>atm/s-cc/sec</td>
<td>8 x 10^-10</td>
</tr>
<tr>
<td>Density</td>
<td>C 25-57</td>
<td>g/cc</td>
<td>3.65</td>
<td>3.71</td>
<td>3.78</td>
<td>3.88</td>
<td>3.91</td>
<td>3.96</td>
<td>4.17</td>
<td>4.30</td>
<td>5.72</td>
<td>6.02</td>
<td>6.20</td>
<td>6.20</td>
<td>3.25</td>
</tr>
<tr>
<td>Hardness</td>
<td>Vickers 500 gr</td>
<td>GPA (kg/mm²)</td>
<td>11.2</td>
<td>12.7</td>
<td>12.7</td>
<td>14.2</td>
<td>14.5</td>
<td>14.4</td>
<td>14.5</td>
<td>14.5</td>
<td>11.7</td>
<td>12.5</td>
<td>12.5</td>
<td>12.5</td>
<td>11.2</td>
</tr>
<tr>
<td>Fracture Toughness</td>
<td>Notched Beam</td>
<td>MPa (x 10^3)</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>F417-87</td>
<td>MPa (x 10^3)</td>
<td>310</td>
<td>350</td>
<td>350</td>
<td>338</td>
<td>379</td>
<td>448</td>
<td>566</td>
<td>621</td>
<td>562</td>
<td>620</td>
<td>795</td>
<td>930</td>
<td>930</td>
</tr>
<tr>
<td>Tensile Strength @ RT</td>
<td></td>
<td>MPa (x 10^3)</td>
<td>150</td>
<td>220</td>
<td>220</td>
<td>172</td>
<td>200</td>
<td>259</td>
<td>344</td>
<td>350</td>
<td>310</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Compressive Strength @ RT</td>
<td>MPa (x 10^3)</td>
<td>187</td>
<td>266</td>
<td>268</td>
<td>221</td>
<td>213</td>
<td>224</td>
<td>241</td>
<td>350</td>
<td>350</td>
<td>310</td>
<td>350</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>Elastic Modulus</td>
<td>C948</td>
<td>GPA (x 10^3)</td>
<td>303</td>
<td>314</td>
<td>345</td>
<td>379</td>
<td>379</td>
<td>358</td>
<td>338</td>
<td>338</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>C948</td>
<td></td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>C.T.E. 25 - 100°C</td>
<td></td>
<td>%</td>
<td>6.1</td>
<td>6.6</td>
<td>6.6</td>
<td>6.3</td>
<td>6.5</td>
<td>6.7</td>
<td>6.0</td>
<td>6.0</td>
<td>8.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
<td>6.9</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td></td>
<td>W/m-K</td>
<td>19</td>
<td>23</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>27</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Max Use Temp</td>
<td></td>
<td>°C</td>
<td>3000</td>
<td>3100</td>
<td>3100</td>
<td>3047</td>
<td>3047</td>
<td>2732</td>
<td>2730</td>
<td>2730</td>
<td>2200</td>
<td>932</td>
<td>932</td>
<td>932</td>
<td>1000</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td></td>
<td>V/m</td>
<td>1650</td>
<td>1700</td>
<td>1700</td>
<td>1675</td>
<td>1675</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
<td>1200</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>537</td>
</tr>
<tr>
<td>Dielectric Constant @ 1 MHz</td>
<td></td>
<td></td>
<td>9.0</td>
<td>9.1</td>
<td>9.5</td>
<td>9.8</td>
<td>9.8</td>
<td>10.5</td>
<td>12.5</td>
<td>12.5</td>
<td>22.7</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Dielectric Loss @ 1 MHz</td>
<td></td>
<td>%</td>
<td>0.0006</td>
</tr>
<tr>
<td>Volume Resistivity, 25°C</td>
<td></td>
<td>ohms-cm</td>
<td>> 1 x 10^-14</td>
</tr>
<tr>
<td>Volume Resistivity, 500°C</td>
<td></td>
<td>ohms-cm</td>
<td>3 x 10^-15</td>
<td>7 x 10^-15</td>
<td>2 x 10^-14</td>
<td>5 x 10^-14</td>
<td>6 x 10^-14</td>
<td>6 x 10^-14</td>
<td>2 x 10^-14</td>
<td>2 x 10^-14</td>
<td>1 x 10^-14</td>
</tr>
</tbody>
</table>

*These are general guidelines for reference only. Actual chemical resistance is dependent on the specific application environment.

Power & Distribution

Power & distribution systems require extreme temperature and environmentally robust materials to provide electrical insulation, high voltage resistance, all while being able to withstand a variety of operational conditions – whether outdoors or within highly specialized vacuum systems.

STC manufactures custom alumina high voltage conductor insulators to increase life and electrical performance over porcelain materials historically used in the distribution industry.

Alternative Energy

The alternative energy industry includes several critical subsectors, including solar, wind, nuclear, fusion, biomass, and plasma gasification. Each benefit from a unique variety of ceramic powders available for meeting specific challenges. Alumina is a reliable material, available in a wide range of purities (74% - 99.96%), used in sensor components, water and substrate handling components, as well as in ceramic to material brazed feedthroughs and assemblies where hermiticity is necessary for safe and effective performance. Silicon nitride provides electrical insulation, lighter weight, greater lubricity for high efficiency operation.

Energy Generation & Storage

Energy components for energy generation and storage capitalizes upon the entire spectrum of STC materials. Hydrogen generation combines both innovative nanoporous materials, as well as high strength and high-density zirconia materials. Ceramic materials find application in dynamic energy storage and recovery systems, where other materials fail to perform.

Dedicated R&D Partnerships

STC can provide the ceramic engineering support necessary for your Research and Development projects, and welcome the opportunity to partner to support SBIR research. We excel at matching ceramic properties to the form, fit and function of your component needs. Our partnerships provide dedicated project teams, direct communication, and on-site technical discussions. We want to partner with you as you develop tomorrow’s technology.

We specialize in providing highly technical, custom solutions for Energy Industry equipment applications. We are able to offer our customers deep expertise in the specific material properties of given ceramic materials, and matching them to specific use cases. Please contact us to discuss your unique challenges.

Barb Gleason
Applications Engineer, Energy Industry
bgleason@ceramics.net
(802) 527-5884